learning model for battery lifetime prediction of LoRa sensors in additive manufacturing

نویسندگان

چکیده

Today, an innovative leap for wireless sensor networks, leading to the realization of novel and intelligent industrial measurement systems, is represented by requirements arising from Industry 4.0 Industrial Internet Things (IIoT) paradigms. In fact, unprecedented challenges capabilities are being faced, with ever-increasing need collect reliable yet accurate data mobile, battery-powered nodes over potentially large areas. Therefore, optimizing energy consumption predicting battery life key issues that be accurately addressed in such IoT-based systems. This case additive manufacturing application considered this work, where smart sensors embedded manufactured artifacts reliably transmit their measured better control production final use, despite physically inaccessible. A Low Power Wide Area Network (LPWAN), particular LoRaWAN (Long Range WAN), represents a promising solution ensure connectivity aforementioned scenario, optimized minimize while guaranteeing long-range operation low- cost deployment. presented application, LoRa equipped monitor set meaningful parameters throughout lifetime. context, once embedded, they inaccessible, only power source originally installed battery. paper, lifetime prediction estimation problems thoroughly investigated. For purpose, model based on Artificial Neural (ANN) proposed, developed starting discharge curve lithium-thionyl chloride batteries used application. The results experimental campaigns carried out real were compared those tune it appropriately. obtained encouraging pave way interesting future developments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Estimation of Battery Lifetime for Wireless Sensors Network

Battery is a major hardware component of wireless sensor networks. Most of them have no power supply and are generally deployed for a long time. Researches have been done on battery physical model and their adaptation for sensors. We present an implementation on a real sensor operating system and how architectural constraints have been assumed. Experiments have been made in order to test the im...

متن کامل

User-Centric Prediction for Battery Lifetime of Mobile Devices

Today, mobile devices are being used for various applications such as making voice/video calls, browsing Internet and so on. The operating time and battery consumption spent in those activities affect the battery life of mobile devices. In this paper, we propose a method for predicting the battery lifetime of mobile devices based on usage patterns. We define the possible states of mobile device...

متن کامل

Online Prediction of Battery Lifetime for Embedded and Mobile Devices

This paper presents a novel, history-based, statistical technique for online battery lifetime prediction. The approach first takes a one-time, full cycle, voltage measurement of a constant load, and uses it to transform the partial voltage curve of the current workload into a form with robust predictability. Based on the transformed history curve, we apply a statistical method to make a lifetim...

متن کامل

an application of equilibrium model for crude oil tanker ships insurance futures in iran

با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta IMEKO

سال: 2023

ISSN: ['0237-028X', '2221-870X']

DOI: https://doi.org/10.21014/actaimeko.v12i1.1400